减数第一次分裂染色体分离过程
这与减数分裂有关,他们产生的配子中一般分为6种类型。其中,只有两种类型的配子,能与正常人的配子结合产生健康后代。
所以,通常会有2/3类型的配子,会在怀孕过程中夭折,以孕妇的极早期流产告终。事实上,很多人就是因为习惯性流产,才被检查出是平衡易位携带者的。
而他们产生的健康后代中,一般有(具体看易位发生在哪条染色体上)50%的概率其染色体数与常人一样,也有50%的概率仍为罗伯逊易位携带者,同样拥有45条染色体。
发生在21号和14号染色染色体中的罗伯逊易位,可能会发生的6种情况,其中三种无法存活,一种会导致唐氏综合征,两种健康型中有一种仍为罗伯逊易位携带者。
那么染色体,能否成对丢失而不影响健康?在我国就曾报道过这么一个罕见的案例,那是一位只拥有44条染色体的奇男子。
他的14号染色体和15号染色体就融合在了一起,属于是罗伯逊易位的纯合子。但除了染色体数量不同外,他的生理指标都是完全正常的。这也意味着他的遗传物质总量是不变的,和普通人无异。
那他的44条染色体是怎么来的?原来他的父母,都是罗伯逊易位携带者,他们之前的关系为表亲,该名男子是父母近亲婚配所生。事实上,该名男子的母亲也曾经历过多次自然流产,而他的家族也有很普遍的流产史。
这对夫妇想生下该男子的36种结果,圈出的是该名奇男子的配型,划黑线的都是无法存活的个体
尽管染色体数目不同,但这名男子与正常人类也是没有生殖隔离的。只是他们生育的后代将会重蹈祖父母的覆辙,成为拥有45条染色体的罗伯逊平衡易位携带者,生育能力低下,极其容易发生流产。
那要怎么克服这一问题?尽管机会渺茫,但只要他遇到同样拥有44条染色体的女孩,这一染色体的排列方式就能稳定遗传下去。而从理论上来说,这名男子只要找到同类婚配,就可能成为一个新的人类亚种了。
是不是很神奇?但这种混沌状态在现有物种中也很常见。例如,亚洲水牛就有两个亚种,河流水牛染色体数目为50条,沼泽水牛染色体则为48条。原因是沼泽水牛的1号染色体,相当于河流水牛的4号和9号染色体融合易位形成的。他们的遗传物质也是相互对应、兼容的,只是两个亚种的杂交后代拥有49条染色体,生育能力低下。
两种亚洲水牛
再放眼到整个动物界,现存所有生物的染色体数目差异都是巨大的,而这些物种都能追溯到同一个祖先。
所以说,从整个演化史的尺度来看,染色体数目变多或变少就更平常了。这样看来,人类祖先从48条染色体变成46条染色体就再普通不过了。
说到这,可能有人就会想入非非了。那人类和黑猩猩属于近亲,还只差两条染色体能交配产生后代吗?
尽管没有人做过这种丧心病狂的试验,或者很久之前我们的祖先是可以的,但现代很可能是不可以的。人类的基因在过去已经发生了翻天覆地的变化,特别是黑猩猩的Y染色体与人类更是相去甚远。所以还是要回到那句,染色体这个容器没想象中那么重要,上面的基因才是重点。
最后,回到问题的最初,人类为什么要从48条染色体变成46条染色体?其实从打包方式来看,46条染色体并没有带来明显的优势,甚至可能造成繁育后代的困难。
但我们可以大胆猜测,这种染色体的融合,可能创造出了一些有优势的新基因。这也许能让我们的祖先受益,并通过自然选择得以传播开来。不过,目前还没发现证据支撑这一假说。
而另一种可能,就只能归结于运气了。在遗传学中就有个概念叫奠基者效应。从48到46,可能并没有产生什么有用的新基因。但刚好,这些变异成46条染色体的个体,都集中在了一个相对孤立的环境。
在那个年代,绝大多数的人类祖先都是48条染色体的。但因为各种极端的原因,或天灾或人祸,这所有的拥有48条染色体的人类都灭绝了,最后只剩下与世隔绝的46条染色体人类苟到了最后。再后来,这单一血脉也开枝散叶,遍布全球,所以才有了我们。
奠基者效应示意图
这确实是一件非常幸运的事,但也并非不可能发生,毕竟人类在过去就已经经历过无数次这种浩劫了。我们能活着,本身就幸运得让人难以置信。
S. M. Gartler.The chromosome number in humans: a brief history.nature.2006Creating a functional single-chromosome yeast.2018Carl Zimmer.The Mystery of the Missing Chromosome.Discover.2012.07.19The 44 Chromosome Man And What He Reveals About Our Genetic PastAnd What He Reveals About Our Genetic Past.2010.02.26Ricki Lewis.Can a Quirky Chromosome Create a Second Human Species?.PLOS Blogs.2016.01.21Case Report: Potential Speciation in Humans Involving Robertsonian Translocations.2013Zhao WW,Wu M,Chen F,Jiang S,Su H,Liang J,Deng C,Hu C,Yu S.Robertsonian translocations: an overview of 872 Robertsonian translocations identified in a diagnostic laboratory in China.PLOS One.2015