高中数学数形结合考题型例题:数形结合的三个原则

数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.首先,由代数式、方程、不等式构造函数时一要注意变量(包括自变量和因变量)的取值范围。

等价性原则

在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.首先,由代数式、方程、不等式构造函数时一要注意变量(包括自变量和因变量)的取值范围。

双向性原则

既要进行几何直观分析,又要进行相应的代数抽象探求,直观的几何说明不能代替严谨的代数推理.另一方面,仅用直观分析,有时反倒使问题变得复杂,比如在二次曲线中的最值问题,有时使用三角换元,反倒简单轻松.

简单性原则

不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线(直线中含有参数)与定二次曲线.

为您推荐

Leave a Reply

Your email address will not be published. Required fields are marked *